Imagine you're the Chief Systems Architect 🏗️ at a quantum computing research facility where traditional optimization approaches fail catastrophically with exponential state spaces, and only advanced algorithmic patterns can compress complex multi-dimensional problems into tractable solutions:
🔬 The Quantum Optimization Challenge:
⚛️ Scenario 1: Quantum Circuit Optimization (Interval DP)
Problem: Optimize quantum gate sequence for minimum error propagation
Challenge: Gates interact in complex ranges - optimal subsequence affects global performance
Example: 100 quantum gates, any contiguous range can be optimized together
Traditional approach: 2^100 possible gate combinations = impossible
Interval DP insight: Optimal arrangement of gates [i,j] depends on optimal sub-arrangements
Result: O(n³) solution for exponential problem space
💾 Scenario 2: Quantum State Compression (Bitmask DP)
Problem: Track 20 qubit states through computation pipeline
Challenge: Each qubit can be in superposition - 2^20 = 1,048,576 possible states
Memory limit: Cannot store full state transition table
Bitmask DP solution: Represent all qubit states as single integer (bitwise operations)
Result: Compress complex multi-dimensional states into efficient representation
🌳 Scenario 3: Quantum Network Topology (Tree DP)
Problem: Optimize quantum entanglement distribution across network hierarchy
Challenge: Tree-structured quantum network with parent-child dependencies
Constraint: Optimal solution at each node depends on optimal child configurations
Tree DP approach: Bottom-up optimization from leaves to root
Result: Global optimum through local optimizations with dependency management
💡 The Advanced DP Mastery Principle:Advanced DP patterns represent the pinnacle of algorithmic sophistication - transforming intractable exponential problems into polynomial solutions through intelligent state compression, dimensional reduction, and dependency modeling. These techniques enable solving previously impossible optimization challenges in real-world complex systems.
State Space Explosion Problem: Traditional DP often faces exponential state spaces:
Advanced Solutions:
Interval DP Complexity:
Bitmask DP Complexity:
/**
* Matrix Chain Multiplication - Classic Interval DP
* Find optimal way to parenthesize matrix chain for minimum multiplications
*/
function matrixChainMultiplication(dimensions) {
console.log(`=== Matrix Chain Multiplication ===`);
console.log("Matrix dimensions:", dimensions);
const n = dimensions.length - 1; // Number of matrices
console.log(`Number of matrices: ${n}`);
// Display matrices
for (let i = 0; i < n; i++) {
console.log(`Matrix ${i}: ${dimensions[i]} × ${dimensions[i+1]}`);
}
// dp[i][j] = minimum multiplications for matrices i to j (inclusive)
const dp = Array.from({ length: n }, () => Array(n).fill(0));
const split = Array.from({ length: n }, () => Array(n).fill(0));
console.log("\nBuilding DP table by chain length:");
// Length 1 chains have 0 cost (single matrix)
console.log("Length 1: No multiplication needed");
// Fill for chain lengths 2 to n
for (let len = 2; len <= n; len++) {
console.log(`\nLength ${len}:`);
for (let i = 0; i <= n - len; i++) {
const j = i + len - 1;
dp[i][j] = Infinity;
console.log(` Matrices [${i}, ${j}]:`);
// Try all possible split points
for (let k = i; k < j; k++) {
// Cost = left chain + right chain + cost to multiply results
const leftCost = dp[i][k];
const rightCost = dp[k + 1][j];
const multiplyCost = dimensions[i] * dimensions[k + 1] * dimensions[j + 1];
const totalCost = leftCost + rightCost + multiplyCost;
console.log(` Split at ${k}: ${leftCost} + ${rightCost} + ${multiplyCost} = ${totalCost}`);
if (totalCost < dp[i][j]) {
dp[i][j] = totalCost;
split[i][j] = k;
console.log(` New minimum: ${totalCost}`);
}
}
console.log(` dp[${i}][${j}] = ${dp[i][j]}`);
}
}
console.log("\nFinal DP table:");
printMatrixDP(dp, n);
console.log(`\nMinimum multiplications: ${dp[0][n-1]}`);
// Reconstruct optimal parenthesization
console.log("\nOptimal parenthesization:");
const parenthesization = getOptimalParentheses(split, 0, n - 1);
console.log(parenthesization);
return dp[0][n - 1];
}
function printMatrixDP(dp, n) {
console.log(" i\\j:", Array.from({ length: n }, (_, i) => i.toString().padStart(6)).join(""));
for (let i = 0; i < n; i++) {
const row = dp[i].map(val => val === 0 ? "-" : val.toString().padStart(6)).join("");
console.log(`${i.toString().padStart(4)}: ${row}`);
}
}
function getOptimalParentheses(split, i, j) {
if (i === j) {
return `M${i}`;
}
const k = split[i][j];
const left = getOptimalParentheses(split, i, k);
const right = getOptimalParentheses(split, k + 1, j);
return `(${left} × ${right})`;
}
// Palindrome partitioning using interval DP
function palindromePartitioningInterval(s) {
console.log(`\n=== Palindrome Partitioning (Interval DP) ===`);
console.log(`String: "${s}"`);
const n = s.length;
// Precompute palindrome check
const isPalindrome = Array.from({ length: n }, () => Array(n).fill(false));
// Single characters
for (let i = 0; i < n; i++) {
isPalindrome[i][i] = true;
}
// Two characters
for (let i = 0; i < n - 1; i++) {
isPalindrome[i][i + 1] = (s[i] === s[i + 1]);
}
// Longer palindromes
for (let len = 3; len <= n; len++) {
for (let i = 0; i <= n - len; i++) {
const j = i + len - 1;
isPalindrome[i][j] = (s[i] === s[j]) && isPalindrome[i + 1][j - 1];
}
}
// dp[i][j] = minimum cuts for substring s[i..j]
const dp = Array.from({ length: n }, () => Array(n).fill(Infinity));
console.log("\nComputing minimum cuts using interval DP:");
for (let len = 1; len <= n; len++) {
for (let i = 0; i <= n - len; i++) {
const j = i + len - 1;
if (isPalindrome[i][j]) {
dp[i][j] = 0; // No cuts needed for palindrome
console.log(`"${s.substring(i, j + 1)}" is palindrome - 0 cuts`);
} else {
// Try all possible cuts
for (let k = i; k < j; k++) {
const cuts = dp[i][k] + dp[k + 1][j] + 1;
dp[i][j] = Math.min(dp[i][j], cuts);
}
console.log(`"${s.substring(i, j + 1)}" needs ${dp[i][j]} cuts`);
}
}
}
return dp[0][n - 1];
}
// Burst balloons - advanced interval DP
function burstBalloons(nums) {
console.log(`\n=== Burst Balloons (Interval DP) ===`);
console.log("Balloon values:", nums);
// Add boundary balloons with value 1
const balloons = [1, ...nums, 1];
const n = balloons.length;
console.log("With boundaries:", balloons);
// dp[i][j] = maximum coins from bursting balloons in open interval (i, j)
const dp = Array.from({ length: n }, () => Array(n).fill(0));
console.log("\nBuilding DP table for burst order:");
// Length of interval (excluding boundaries)
for (let len = 2; len < n; len++) {
console.log(`\nInterval length ${len - 1}:`);
for (let i = 0; i <= n - len - 1; i++) {
const j = i + len;
console.log(` Interval (${i}, ${j}) - values between ${balloons[i]} and ${balloons[j]}:`);
// Try bursting each balloon k last in interval (i, j)
for (let k = i + 1; k < j; k++) {
const coins = balloons[i] * balloons[k] * balloons[j];
const total = dp[i][k] + dp[k][j] + coins;
console.log(` Burst ${balloons[k]} last: ${balloons[i]}×${balloons[k]}×${balloons[j]} + ${dp[i][k]} + ${dp[k][j]} = ${total}`);
dp[i][j] = Math.max(dp[i][j], total);
}
console.log(` dp[${i}][${j}] = ${dp[i][j]}`);
}
}
console.log(`\nMaximum coins: ${dp[0][n-1]}`);
return dp[0][n - 1];
}
// Run examples
console.log("=== Interval DP Examples ===");
console.log("--- Matrix Chain Multiplication ---");
matrixChainMultiplication([40, 20, 30, 10, 30]);
console.log("--- Palindrome Partitioning ---");
palindromePartitioningInterval("abcba");
console.log("--- Burst Balloons ---");
burstBalloons([3, 1, 5, 8]);
/**
* Traveling Salesman Problem using Bitmask DP
* Find shortest route visiting all cities exactly once
*/
function travelingSalesman(distances) {
console.log(`=== Traveling Salesman Problem (Bitmask DP) ===`);
const n = distances.length;
console.log(`Cities: ${n}`);
console.log("Distance matrix:");
distances.forEach((row, i) => {
console.log(`City ${i}: [${row.join(', ')}]`);
});
// dp[mask][i] = minimum cost to visit cities in mask, ending at city i
const VISITED_ALL = (1 << n) - 1;
const dp = Array.from({ length: 1 << n }, () => Array(n).fill(Infinity));
// Start at city 0
dp[1][0] = 0; // mask = 1 (only city 0 visited), end at city 0
console.log("\nBuilding DP table by visited cities:");
console.log("Starting at city 0, mask = 1");
for (let mask = 1; mask <= VISITED_ALL; mask++) {
const visitedCities = [];
for (let i = 0; i < n; i++) {
if (mask & (1 << i)) visitedCities.push(i);
}
if (visitedCities.length <= 1) continue;
console.log(`\nMask ${mask.toString(2).padStart(n, '0')} (cities: [${visitedCities.join(', ')}]):`);
for (let current = 0; current < n; current++) {
if (!(mask & (1 << current))) continue; // current city not in mask
const prevMask = mask ^ (1 << current); // Remove current city
for (let prev = 0; prev < n; prev++) {
if (prev === current || !(prevMask & (1 << prev))) continue;
const newCost = dp[prevMask][prev] + distances[prev][current];
if (newCost < dp[mask][current]) {
dp[mask][current] = newCost;
console.log(` To city ${current} from ${prev}: cost = ${newCost}`);
}
}
}
}
// Find minimum cost to visit all cities and return to start
let minCost = Infinity;
let bestLastCity = -1;
console.log("\nFinding minimum cost to return to start:");
for (let i = 1; i < n; i++) {
const returnCost = dp[VISITED_ALL][i] + distances[i][0];
console.log(`From city ${i}: ${dp[VISITED_ALL][i]} + ${distances[i][0]} = ${returnCost}`);
if (returnCost < minCost) {
minCost = returnCost;
bestLastCity = i;
}
}
console.log(`\nMinimum TSP cost: ${minCost}`);
console.log(`Best last city before returning: ${bestLastCity}`);
return minCost;
}
// Assignment problem using bitmask DP
function assignmentProblem(cost) {
console.log(`\n=== Assignment Problem (Bitmask DP) ===`);
const n = cost.length;
console.log(`Workers: ${n}, Tasks: ${n}`);
console.log("Cost matrix:");
cost.forEach((row, i) => {
console.log(`Worker ${i}: [${row.join(', ')}]`);
});
// dp[mask] = minimum cost to assign tasks in mask
const dp = new Array(1 << n).fill(Infinity);
dp[0] = 0; // No tasks assigned
console.log("\nAssigning tasks optimally:");
for (let mask = 0; mask < (1 << n); mask++) {
if (dp[mask] === Infinity) continue;
const assignedTasks = [];
for (let i = 0; i < n; i++) {
if (mask & (1 << i)) assignedTasks.push(i);
}
const worker = assignedTasks.length; // Next worker to assign
if (worker >= n) continue;
console.log(`Assigning worker ${worker} (tasks assigned: [${assignedTasks.join(', ')}]):`);
for (let task = 0; task < n; task++) {
if (mask & (1 << task)) continue; // Task already assigned
const newMask = mask | (1 << task);
const newCost = dp[mask] + cost[worker][task];
if (newCost < dp[newMask]) {
dp[newMask] = newCost;
console.log(` Task ${task}: cost ${cost[worker][task]}, total = ${newCost}`);
}
}
}
const allTasksMask = (1 << n) - 1;
console.log(`\nMinimum assignment cost: ${dp[allTasksMask]}`);
return dp[allTasksMask];
}
// Subset sum using bitmask DP
function subsetSumBitmask(nums, target) {
console.log(`\n=== Subset Sum (Bitmask DP) ===`);
console.log(`Numbers: [${nums.join(', ')}]`);
console.log(`Target: ${target}`);
const n = nums.length;
// For each subset, compute its sum
console.log("\nEnumerating all subsets:");
let validSubsets = [];
for (let mask = 0; mask < (1 << n); mask++) {
let sum = 0;
const subset = [];
for (let i = 0; i < n; i++) {
if (mask & (1 << i)) {
sum += nums[i];
subset.push(nums[i]);
}
}
if (subset.length > 0) {
const maskBinary = mask.toString(2).padStart(n, '0');
console.log(`Mask ${maskBinary}: [${subset.join(', ')}] = ${sum}`);
if (sum === target) {
validSubsets.push({ mask, subset, sum });
}
}
}
console.log(`\nSubsets with sum ${target}:`);
validSubsets.forEach((valid, idx) => {
const maskBinary = valid.mask.toString(2).padStart(n, '0');
console.log(`${idx + 1}. Mask ${maskBinary}: [${valid.subset.join(', ')}]`);
});
return validSubsets.length > 0;
}
// Run examples
console.log("=== Bitmask DP Examples ===");
console.log("--- Traveling Salesman ---");
const tspDistances = [
[0, 10, 15, 20],
[10, 0, 35, 25],
[15, 35, 0, 30],
[20, 25, 30, 0]
];
travelingSalesman(tspDistances);
console.log("--- Assignment Problem ---");
const assignmentCost = [
[9, 2, 7, 8],
[6, 4, 3, 7],
[5, 8, 1, 8],
[7, 6, 9, 4]
];
assignmentProblem(assignmentCost);
console.log("--- Subset Sum ---");
subsetSumBitmask([3, 34, 4, 12, 5, 2], 9);
/**
* Tree DP - Dynamic Programming on Tree Structures
* Optimal solutions considering parent-child relationships
*/
class TreeNode {
constructor(val) {
this.val = val;
this.children = [];
this.parent = null;
}
addChild(child) {
this.children.push(child);
child.parent = this;
}
}
function createSampleTree() {
// 1
// / | \
// 2 3 4
// /| | |\
// 5 6 7 8 9
const nodes = Array.from({ length: 10 }, (_, i) => new TreeNode(i));
nodes[1].addChild(nodes[2]);
nodes[1].addChild(nodes[3]);
nodes[1].addChild(nodes[4]);
nodes[2].addChild(nodes[5]);
nodes[2].addChild(nodes[6]);
nodes[3].addChild(nodes[7]);
nodes[4].addChild(nodes[8]);
nodes[4].addChild(nodes[9]);
return nodes[1]; // Return root
}
// Tree diameter using Tree DP
function treeDiameter(root) {
console.log(`=== Tree Diameter (Tree DP) ===`);
let maxDiameter = 0;
function dfs(node) {
if (!node || node.children.length === 0) {
return 0; // Leaf node height
}
console.log(`Processing node ${node.val}:`);
// Get heights of all subtrees
const childHeights = [];
for (const child of node.children) {
const height = dfs(child);
childHeights.push(height);
console.log(` Child ${child.val} has height ${height}`);
}
// Sort heights in descending order
childHeights.sort((a, b) => b - a);
// Diameter through this node = sum of two largest heights + 2
let diameterThroughNode = 0;
if (childHeights.length >= 2) {
diameterThroughNode = childHeights[0] + childHeights[1] + 2;
} else if (childHeights.length === 1) {
diameterThroughNode = childHeights[0] + 1;
}
console.log(` Diameter through node ${node.val}: ${diameterThroughNode}`);
maxDiameter = Math.max(maxDiameter, diameterThroughNode);
// Return height of this subtree
const subtreeHeight = childHeights.length > 0 ? childHeights[0] + 1 : 0;
console.log(` Subtree height at node ${node.val}: ${subtreeHeight}`);
return subtreeHeight;
}
dfs(root);
console.log(`\nMaximum tree diameter: ${maxDiameter}`);
return maxDiameter;
}
// Tree node deletion problem
function maxSumWithoutAdjacentNodes(root, values) {
console.log(`\n=== Maximum Sum Without Adjacent Nodes ===`);
console.log("Node values:", values);
// dp[node][0] = max sum in subtree excluding node
// dp[node][1] = max sum in subtree including node
const dp = new Map();
function solve(node) {
if (!node) return [0, 0];
console.log(`Processing node ${node.val} (value: ${values[node.val]}):`);
let excludeSum = 0; // Don't include current node
let includeSum = values[node.val]; // Include current node
for (const child of node.children) {
const [childExclude, childInclude] = solve(child);
console.log(` Child ${child.val}: exclude=${childExclude}, include=${childInclude}`);
// If we exclude current node, we can take max from child
excludeSum += Math.max(childExclude, childInclude);
// If we include current node, we must exclude all children
includeSum += childExclude;
}
console.log(` Node ${node.val}: exclude=${excludeSum}, include=${includeSum}`);
dp.set(node, [excludeSum, includeSum]);
return [excludeSum, includeSum];
}
const [excludeRoot, includeRoot] = solve(root);
const maxSum = Math.max(excludeRoot, includeRoot);
console.log(`\nMaximum sum without adjacent nodes: ${maxSum}`);
return maxSum;
}
// Tree rerooting DP
function treeRerooting(root) {
console.log(`\n=== Tree Rerooting DP ===`);
console.log("Computing optimal values for each node as root");
const subtreeSize = new Map();
const subtreeSum = new Map();
const totalNodes = countNodes(root);
// First DFS: compute subtree information
function dfsDown(node, parent = null) {
subtreeSize.set(node, 1);
subtreeSum.set(node, node.val);
for (const child of node.children) {
if (child !== parent) {
dfsDown(child, node);
subtreeSize.set(node, subtreeSize.get(node) + subtreeSize.get(child));
subtreeSum.set(node, subtreeSum.get(node) + subtreeSum.get(child));
}
}
}
// Second DFS: reroot and compute answers
const answer = new Map();
function dfsUp(node, parent = null, parentContrib = 0) {
// Total sum when this node is root
answer.set(node, subtreeSum.get(node) + parentContrib);
console.log(`Node ${node.val} as root: sum = ${answer.get(node)}`);
for (const child of node.children) {
if (child !== parent) {
// Contribution from parent direction when child becomes root
const upContrib = answer.get(node) - subtreeSum.get(child);
dfsUp(child, node, upContrib);
}
}
}
dfsDown(root);
dfsUp(root);
// Find best root
let bestRoot = root;
let bestSum = answer.get(root);
for (const [node, sum] of answer) {
if (sum > bestSum) {
bestSum = sum;
bestRoot = node;
}
}
console.log(`Best root: node ${bestRoot.val} with sum ${bestSum}`);
return { bestRoot, bestSum, allAnswers: answer };
}
function countNodes(root) {
if (!root) return 0;
let count = 1;
for (const child of root.children) {
count += countNodes(child);
}
return count;
}
// Run examples
console.log("=== Tree DP Examples ===");
const tree = createSampleTree();
console.log("--- Tree Diameter ---");
treeDiameter(tree);
console.log("--- Max Sum Without Adjacent ---");
const nodeValues = [0, 5, 2, 8, 3, 1, 4, 6, 7, 9]; // Values for nodes 0-9
maxSumWithoutAdjacentNodes(tree, nodeValues);
console.log("--- Tree Rerooting ---");
treeRerooting(tree);
/**
* Digit DP - Handle number constraints digit by digit
* Useful for counting numbers with specific properties
*/
function countNumbersWithSumOfDigits(n, sum) {
console.log(`=== Count Numbers with Sum of Digits ===`);
console.log(`Up to ${n} digits, sum = ${sum}`);
// dp[pos][currentSum][tight][started]
const memo = new Map();
function solve(pos, currentSum, tight, started, maxDigits) {
// Base case
if (pos === maxDigits) {
return (started && currentSum === sum) ? 1 : 0;
}
const key = `${pos}_${currentSum}_${tight}_${started}`;
if (memo.has(key)) {
return memo.get(key);
}
let limit = tight ? parseInt(n.toString()[pos] || '0') : 9;
let result = 0;
for (let digit = 0; digit <= limit; digit++) {
const newTight = tight && (digit === limit);
const newStarted = started || (digit > 0);
const newSum = newStarted ? currentSum + digit : currentSum;
if (newSum <= sum) { // Pruning: don't exceed target sum
result += solve(pos + 1, newSum, newTight, newStarted, maxDigits);
}
}
memo.set(key, result);
return result;
}
const maxDigits = n.toString().length;
const count = solve(0, 0, true, false, maxDigits);
console.log(`Numbers ≤ ${n} with digit sum ${sum}: ${count}`);
return count;
}
// Count numbers with non-decreasing digits
function countNonDecreasingNumbers(limit) {
console.log(`\n=== Count Non-Decreasing Numbers ===`);
console.log(`Up to ${limit}`);
const digits = limit.toString().split('').map(Number);
const memo = new Map();
function solve(pos, lastDigit, tight, started) {
if (pos === digits.length) {
return started ? 1 : 0;
}
const key = `${pos}_${lastDigit}_${tight}_${started}`;
if (memo.has(key)) {
return memo.get(key);
}
const maxDigit = tight ? digits[pos] : 9;
let result = 0;
for (let digit = 0; digit <= maxDigit; digit++) {
const newTight = tight && (digit === maxDigit);
const newStarted = started || (digit > 0);
// Check non-decreasing constraint
if (!newStarted || digit >= lastDigit) {
const newLastDigit = newStarted ? digit : -1;
result += solve(pos + 1, newLastDigit, newTight, newStarted);
}
}
memo.set(key, result);
return result;
}
const count = solve(0, -1, true, false);
console.log(`Non-decreasing numbers ≤ ${limit}: ${count}`);
// Show some examples
console.log("Examples: 123, 1234, 1133, 2222, 3456, etc.");
return count;
}
// Count numbers divisible by K with digit constraints
function countDivisibleByK(limit, k, digitConstraints) {
console.log(`\n=== Count Numbers Divisible by ${k} ===`);
console.log(`Up to ${limit}, with digit constraints:`, digitConstraints);
const digits = limit.toString().split('').map(Number);
const memo = new Map();
function solve(pos, remainder, tight, started) {
if (pos === digits.length) {
return (started && remainder === 0) ? 1 : 0;
}
const key = `${pos}_${remainder}_${tight}_${started}`;
if (memo.has(key)) {
return memo.get(key);
}
const maxDigit = tight ? digits[pos] : 9;
let result = 0;
for (let digit = 0; digit <= maxDigit; digit++) {
// Check digit constraints
if (digitConstraints && !digitConstraints.includes(digit)) {
continue;
}
const newTight = tight && (digit === maxDigit);
const newStarted = started || (digit > 0);
const newRemainder = newStarted ? (remainder * 10 + digit) % k : remainder;
result += solve(pos + 1, newRemainder, newTight, newStarted);
}
memo.set(key, result);
return result;
}
const count = solve(0, 0, true, false);
console.log(`Numbers ≤ ${limit} divisible by ${k}: ${count}`);
return count;
}
// Magic numbers (sum of digits equals product of digits)
function countMagicNumbers(limit) {
console.log(`\n=== Count Magic Numbers ===`);
console.log(`Numbers where sum of digits = product of digits, up to ${limit}`);
const digits = limit.toString().split('').map(Number);
const memo = new Map();
function solve(pos, sum, product, tight, started) {
if (pos === digits.length) {
return (started && sum === product) ? 1 : 0;
}
const key = `${pos}_${sum}_${product}_${tight}_${started}`;
if (memo.has(key)) {
return memo.get(key);
}
const maxDigit = tight ? digits[pos] : 9;
let result = 0;
for (let digit = 0; digit <= maxDigit; digit++) {
const newTight = tight && (digit === maxDigit);
const newStarted = started || (digit > 0);
let newSum = sum;
let newProduct = product;
if (newStarted) {
newSum += digit;
newProduct *= digit;
// Pruning: if product becomes too large compared to possible sum
if (newProduct > newSum + (digits.length - pos - 1) * 9) {
continue;
}
}
result += solve(pos + 1, newSum, newProduct, newTight, newStarted);
}
memo.set(key, result);
return result;
}
const count = solve(0, 0, 1, true, false);
console.log(`Magic numbers ≤ ${limit}: ${count}`);
// Find and display some magic numbers
const magicNumbers = [];
for (let i = 1; i <= Math.min(limit, 1000); i++) {
const str = i.toString();
const sum = str.split('').reduce((s, d) => s + parseInt(d), 0);
const product = str.split('').reduce((p, d) => p * parseInt(d), 1);
if (sum === product) {
magicNumbers.push(i);
}
}
console.log(`Examples: [${magicNumbers.slice(0, 10).join(', ')}]${magicNumbers.length > 10 ? '...' : ''}`);
return count;
}
// Run examples
console.log("=== Digit DP Examples ===");
console.log("--- Sum of Digits ---");
countNumbersWithSumOfDigits(100, 9);
console.log("--- Non-Decreasing Numbers ---");
countNonDecreasingNumbers(1000);
console.log("--- Divisible by K ---");
countDivisibleByK(100, 7, [1, 2, 3, 4, 5]); // Only digits 1-5 allowed
console.log("--- Magic Numbers ---");
countMagicNumbers(200);
Sophisticated Algorithm Arsenal:
Pattern Recognition Excellence:
Interval DP Mastery:
Bitmask DP Sophistication:
Tree DP Excellence:
Digit DP Innovation:
Computational Optimization:
Operations Research:
Computer Science Applications:
Complexity Theory:
Advanced Algorithm Design:
Advanced DP Problem Analysis:
1. Problem Structure Recognition:
- Range-based optimization → Interval DP
- Subset/permutation problems → Bitmask DP
- Hierarchical dependencies → Tree DP
- Number constraints → Digit DP
2. State Space Design:
- Identify minimal sufficient state representation
- Apply compression techniques where possible
- Design efficient transition functions
3. Implementation Strategy:
- Choose appropriate memoization approach
- Implement pruning for efficiency
- Plan for path reconstruction if needed
4. Optimization:
- Apply space compression techniques
- Implement iterative versions where beneficial
- Consider parallel processing opportunities
Performance Optimization Guidelines:
You now possess mastery of the most sophisticated dynamic programming techniques that enable solving previously intractable optimization problems. This expertise represents the pinnacle of algorithmic sophistication - the ability to compress exponential complexity into polynomial solutions through intelligent state representation and mathematical insight.
The progression from basic DP patterns to advanced state compression techniques represents a fundamental transformation in problem-solving capability - the ability to recognize complex mathematical structures and apply sophisticated algorithmic patterns to real-world optimization challenges.
This advanced DP mastery prepares you for cutting-edge applications in operations research, artificial intelligence, and computational optimization where traditional approaches fail and only sophisticated algorithmic techniques can provide tractable solutions to complex real-world problems.
I'm Rahul, Sr. Software Engineer (SDE II) and passionate content creator. Sharing my expertise in software development to assist learners.
More about me