Imagine you're a master cryptographer during wartime 🕵️♂️ tasked with creating unbreakable codes and analyzing enemy communications:
🔐 The Cipher Workshop:
🧮 The Mathematical Breakthrough:
This is exactly how mathematics powers modern algorithms! Every sophisticated algorithm relies on mathematical foundations:
Mathematical thinking transforms coding from trial-and-error to systematic problem-solving - enabling you to design algorithms that are provably correct, optimally efficient, and mathematically elegant!
Mathematics provides the formal framework for describing, analyzing, and proving the correctness of algorithms. It's like having a precise vocabulary to discuss complex computational concepts with absolute clarity.
Core Mathematical Areas for Algorithms:
Precision and Rigor:
Problem Modeling:
Concept: Mathematics of integers and their properties, especially useful for hashing and cryptography.
// Number Theory Applications in Algorithms
class NumberTheoryAlgorithms {
// Greatest Common Divisor using Euclidean Algorithm
gcd(a, b, depth = 0) {
const indent = ' '.repeat(depth);
console.log(`${indent}🔢 gcd(${a}, ${b}) called at depth ${depth}`);
// Base case: gcd(a, 0) = a
if (b === 0) {
console.log(`${indent}✅ Base case: gcd(${a}, 0) = ${a}`);
return a;
}
// Euclidean algorithm: gcd(a, b) = gcd(b, a mod b)
const remainder = a % b;
console.log(`${indent}🔄 Computing: gcd(${a}, ${b}) = gcd(${b}, ${a} mod ${b}) = gcd(${b}, ${remainder})`);
return this.gcd(b, remainder, depth + 1);
}
// Extended Euclidean Algorithm (finds coefficients)
extendedGCD(a, b) {
console.log(`🔢 Extended GCD for ${a} and ${b}`);
if (b === 0) {
console.log(`Base case: ${a} = 1 × ${a} + 0 × 0`);
return { gcd: a, x: 1, y: 0 };
}
const result = this.extendedGCD(b, a % b);
const x = result.y;
const y = result.x - Math.floor(a / b) * result.y;
console.log(`${a} = ${x} × ${a} + ${y} × ${b} (gcd = ${result.gcd})`);
return { gcd: result.gcd, x: x, y: y };
}
// Modular Exponentiation (efficient power calculation)
modularExponentiation(base, exponent, modulus) {
console.log(`⚡ Computing ${base}^${exponent} mod ${modulus} efficiently`);
let result = 1;
base = base % modulus;
let currentExp = exponent;
let currentBase = base;
let step = 0;
while (currentExp > 0) {
step++;
console.log(`Step ${step}: base=${currentBase}, exp=${currentExp}, result=${result}`);
// If exponent is odd, multiply base with result
if (currentExp % 2 === 1) {
result = (result * currentBase) % modulus;
console.log(` Odd exponent: result = (${result / currentBase} × ${currentBase}) mod ${modulus} = ${result}`);
}
// Square the base and halve the exponent
currentBase = (currentBase * currentBase) % modulus;
currentExp = Math.floor(currentExp / 2);
console.log(` Next iteration: base=${currentBase}, exp=${currentExp}`);
}
console.log(`✅ Final result: ${base}^${exponent} mod ${modulus} = ${result}`);
return result;
}
// Prime Number Testing
isPrime(n) {
console.log(`🔍 Testing if ${n} is prime`);
if (n < 2) {
console.log(`${n} < 2, not prime`);
return false;
}
if (n === 2) {
console.log(`${n} = 2, prime`);
return true;
}
if (n % 2 === 0) {
console.log(`${n} is even, not prime`);
return false;
}
// Check odd divisors up to √n
const limit = Math.sqrt(n);
console.log(`Checking divisors up to √${n} ≈ ${limit.toFixed(2)}`);
for (let i = 3; i <= limit; i += 2) {
if (n % i === 0) {
console.log(`${n} ÷ ${i} = ${n/i}, not prime`);
return false;
}
}
console.log(`✅ ${n} is prime!`);
return true;
}
// Hash Function using Modular Arithmetic
polynomialHash(string, base = 31, modulus = 1000000007) {
console.log(`🔐 Computing polynomial hash for "${string}"`);
console.log(`Using base=${base}, modulus=${modulus}`);
let hash = 0;
let currentPower = 1;
for (let i = 0; i < string.length; i++) {
const charCode = string.charCodeAt(i);
const contribution = (charCode * currentPower) % modulus;
hash = (hash + contribution) % modulus;
console.log(` Char '${string[i]}' (${charCode}): ${charCode} × ${currentPower} = ${contribution}, hash = ${hash}`);
currentPower = (currentPower * base) % modulus;
}
console.log(`✅ Hash("${string}") = ${hash}`);
return hash;
}
// Demonstrate number theory applications
demonstrateNumberTheory() {
console.log('=== NUMBER THEORY IN ALGORITHMS ===\n');
console.log('1. GREATEST COMMON DIVISOR:');
const gcdResult = this.gcd(48, 18);
console.log(`GCD(48, 18) = ${gcdResult}\n`);
console.log('2. EXTENDED GCD (for cryptography):');
const extGcd = this.extendedGCD(35, 15);
console.log(`Extended GCD result: gcd=${extGcd.gcd}, x=${extGcd.x}, y=${extGcd.y}\n`);
console.log('3. MODULAR EXPONENTIATION (for encryption):');
const modExp = this.modularExponentiation(3, 7, 5);
console.log(`Modular exponentiation result: ${modExp}\n`);
console.log('4. PRIME TESTING:');
const primeTests = [17, 25, 29];
primeTests.forEach(num => {
const isPrime = this.isPrime(num);
console.log(`${num} is ${isPrime ? 'prime' : 'not prime'}`);
});
console.log('');
console.log('5. POLYNOMIAL HASHING:');
const strings = ['hello', 'world', 'algorithm'];
strings.forEach(str => {
this.polynomialHash(str);
});
return {
gcd: gcdResult,
extendedGcd: extGcd,
modularExp: modExp,
hashing: 'Demonstrated'
};
}
}
// Test number theory algorithms
const numberTheory = new NumberTheoryAlgorithms();
numberTheory.demonstrateNumberTheory();
Concept: Mathematical techniques for counting arrangements, selections, and combinations.
// Combinatorics Applications in Algorithms
class CombinatoricsAlgorithms {
constructor() {
this.factorialCache = new Map();
}
// Factorial with memoization
factorial(n) {
if (this.factorialCache.has(n)) {
return this.factorialCache.get(n);
}
if (n <= 1) {
this.factorialCache.set(n, 1);
return 1;
}
const result = n * this.factorial(n - 1);
this.factorialCache.set(n, result);
return result;
}
// Permutations: P(n,r) = n! / (n-r)!
permutations(n, r) {
console.log(`🔄 Calculating P(${n}, ${r}) = ${n}! / (${n}-${r})!`);
if (r > n) {
console.log(`r > n, result = 0`);
return 0;
}
const numerator = this.factorial(n);
const denominator = this.factorial(n - r);
const result = numerator / denominator;
console.log(`P(${n}, ${r}) = ${numerator} / ${denominator} = ${result}`);
console.log(`💡 Meaning: ${result} ways to arrange ${r} items from ${n} items where order matters`);
return result;
}
// Combinations: C(n,r) = n! / (r! * (n-r)!)
combinations(n, r) {
console.log(`🔢 Calculating C(${n}, ${r}) = ${n}! / (${r}! × (${n}-${r})!)`);
if (r > n) {
console.log(`r > n, result = 0`);
return 0;
}
const numerator = this.factorial(n);
const denominator = this.factorial(r) * this.factorial(n - r);
const result = numerator / denominator;
console.log(`C(${n}, ${r}) = ${numerator} / (${this.factorial(r)} × ${this.factorial(n - r)}) = ${result}`);
console.log(`💡 Meaning: ${result} ways to choose ${r} items from ${n} items where order doesn't matter`);
return result;
}
// Generate all permutations of an array
generatePermutations(array, currentPermutation = [], result = [], depth = 0) {
const indent = ' '.repeat(depth);
console.log(`${indent}🔄 Generating permutations: current=[${currentPermutation.join(',')}], remaining=[${array.join(',')}]`);
// Base case: no more elements to permute
if (array.length === 0) {
console.log(`${indent}✅ Complete permutation: [${currentPermutation.join(', ')}]`);
result.push([...currentPermutation]);
return result;
}
// Recursive case: try each element as the next choice
for (let i = 0; i < array.length; i++) {
const chosen = array[i];
const remaining = array.filter((_, index) => index !== i);
console.log(`${indent}➡️ Choosing ${chosen}, remaining: [${remaining.join(',')}]`);
currentPermutation.push(chosen);
this.generatePermutations(remaining, currentPermutation, result, depth + 1);
currentPermutation.pop(); // Backtrack
console.log(`${indent}⬅️ Backtracking from ${chosen}`);
}
return result;
}
// Generate all combinations of size r from array
generateCombinations(array, r, start = 0, currentCombination = [], result = [], depth = 0) {
const indent = ' '.repeat(depth);
console.log(`${indent}🔢 Generating combinations of size ${r}: current=[${currentCombination.join(',')}], start=${start}`);
// Base case: combination is complete
if (currentCombination.length === r) {
console.log(`${indent}✅ Complete combination: [${currentCombination.join(', ')}]`);
result.push([...currentCombination]);
return result;
}
// Recursive case: try each remaining element
for (let i = start; i < array.length; i++) {
const chosen = array[i];
console.log(`${indent}➡️ Adding ${chosen} to combination`);
currentCombination.push(chosen);
this.generateCombinations(array, r, i + 1, currentCombination, result, depth + 1);
currentCombination.pop(); // Backtrack
console.log(`${indent}⬅️ Removing ${chosen} from combination`);
}
return result;
}
// Count paths in a grid (dynamic programming application)
countGridPaths(m, n) {
console.log(`🗺️ Counting paths in ${m}×${n} grid (right and down moves only)`);
// Mathematical insight: need (m-1) rights + (n-1) downs = total (m+n-2) moves
// Choose (m-1) positions for right moves from (m+n-2) total positions
const totalMoves = m + n - 2;
const rightMoves = m - 1;
console.log(`Total moves needed: ${totalMoves}`);
console.log(`Right moves needed: ${rightMoves}`);
console.log(`Down moves needed: ${n - 1}`);
const paths = this.combinations(totalMoves, rightMoves);
console.log(`✅ Total unique paths: C(${totalMoves}, ${rightMoves}) = ${paths}`);
return paths;
}
// Demonstrate combinatorics applications
demonstrateCombinatorics() {
console.log('\n=== COMBINATORICS IN ALGORITHMS ===\n');
console.log('1. PERMUTATIONS AND COMBINATIONS:');
console.log('Team selection from 8 players:');
const teamPerms = this.permutations(8, 3);
console.log(`Ways to select and arrange 3 players: ${teamPerms}`);
const teamCombs = this.combinations(8, 3);
console.log(`Ways to select 3 players (order doesn't matter): ${teamCombs}\n`);
console.log('2. GENERATING ALL PERMUTATIONS:');
const smallArray = ['A', 'B', 'C'];
console.log(`Generating all permutations of [${smallArray.join(', ')}]:`);
const allPerms = this.generatePermutations(smallArray);
console.log(`Total permutations found: ${allPerms.length}`);
allPerms.forEach((perm, index) => {
console.log(` ${index + 1}: [${perm.join(', ')}]`);
});
console.log('');
console.log('3. GENERATING ALL COMBINATIONS:');
const numbers = [1, 2, 3, 4];
console.log(`Generating all combinations of size 2 from [${numbers.join(', ')}]:`);
const allCombs = this.generateCombinations(numbers, 2);
console.log(`Total combinations found: ${allCombs.length}`);
allCombs.forEach((comb, index) => {
console.log(` ${index + 1}: [${comb.join(', ')}]`);
});
console.log('');
console.log('4. GRID PATH COUNTING:');
const gridPaths = this.countGridPaths(3, 3);
console.log(`Paths in 3×3 grid: ${gridPaths}\n`);
console.log('5. REAL-WORLD APPLICATIONS:');
console.log('- Password combinations: C(62, 8) for 8-char alphanumeric');
console.log('- DNA sequences: 4^n possible sequences of length n');
console.log('- Algorithm analysis: counting operations and complexity');
console.log('- Graph theory: counting paths and cycles');
return {
permutations: teamPerms,
combinations: teamCombs,
allPermutations: allPerms.length,
allCombinations: allCombs.length,
gridPaths: gridPaths
};
}
}
// Test combinatorics algorithms
const combinatorics = new CombinatoricsAlgorithms();
combinatorics.demonstrateCombinatorics();
Concept: Mathematical foundations for data organization and logical operations.
// Set Theory and Boolean Logic in Algorithms
class SetTheoryAlgorithms {
// Set operations with detailed explanations
setUnion(setA, setB) {
console.log(`🔗 Computing A ∪ B (Union)`);
console.log(`A = {${Array.from(setA).join(', ')}}`);
console.log(`B = {${Array.from(setB).join(', ')}}`);
const union = new Set([...setA, ...setB]);
console.log(`A ∪ B = {${Array.from(union).join(', ')}}`);
console.log(`💡 Union contains all elements from both sets (no duplicates)`);
return union;
}
setIntersection(setA, setB) {
console.log(`🔗 Computing A ∩ B (Intersection)`);
console.log(`A = {${Array.from(setA).join(', ')}}`);
console.log(`B = {${Array.from(setB).join(', ')}}`);
const intersection = new Set();
for (const element of setA) {
if (setB.has(element)) {
intersection.add(element);
console.log(` ${element} ∈ A and ${element} ∈ B → add to intersection`);
}
}
console.log(`A ∩ B = {${Array.from(intersection).join(', ')}}`);
console.log(`💡 Intersection contains only elements in both sets`);
return intersection;
}
setDifference(setA, setB) {
console.log(`🔗 Computing A - B (Difference)`);
console.log(`A = {${Array.from(setA).join(', ')}}`);
console.log(`B = {${Array.from(setB).join(', ')}}`);
const difference = new Set();
for (const element of setA) {
if (!setB.has(element)) {
difference.add(element);
console.log(` ${element} ∈ A but ${element} ∉ B → add to difference`);
}
}
console.log(`A - B = {${Array.from(difference).join(', ')}}`);
console.log(`💡 Difference contains elements in A but not in B`);
return difference;
}
// Boolean logic operations
evaluateBooleanExpression(expression, variables) {
console.log(`🔍 Evaluating Boolean expression: ${expression}`);
console.log(`Variables: ${JSON.stringify(variables)}`);
// Simple parser for basic boolean expressions
let result = expression;
// Replace variables with their values
for (const [variable, value] of Object.entries(variables)) {
result = result.replaceAll(variable, value.toString());
}
console.log(`After substitution: ${result}`);
// Evaluate the expression (simplified evaluation)
try {
const finalResult = eval(result.replaceAll('AND', '&&').replaceAll('OR', '||').replaceAll('NOT', '!'));
console.log(`✅ Result: ${finalResult}`);
return finalResult;
} catch (error) {
console.log(`❌ Error evaluating expression: ${error.message}`);
return null;
}
}
// Truth table generation
generateTruthTable(variables, expression) {
console.log(`📊 Generating truth table for: ${expression}`);
console.log(`Variables: [${variables.join(', ')}]`);
const numVariables = variables.length;
const numRows = Math.pow(2, numVariables);
const table = [];
console.log('\nTruth Table:');
const header = variables.join(' | ') + ' | ' + expression;
console.log(header);
console.log('-'.repeat(header.length));
for (let i = 0; i < numRows; i++) {
const row = {};
let binaryString = i.toString(2).padStart(numVariables, '0');
// Set variable values based on binary representation
for (let j = 0; j < numVariables; j++) {
const value = binaryString[j] === '1';
row[variables[j]] = value;
}
// Evaluate expression with current variable assignment
const result = this.evaluateBooleanExpression(expression, row);
row.result = result;
// Format row for display
const rowDisplay = variables.map(v => row[v] ? 'T' : 'F').join(' | ') + ' | ' + (result ? 'T' : 'F');
console.log(rowDisplay);
table.push(row);
}
return table;
}
// Practical application: Database query optimization
optimizeQuery(tables, conditions) {
console.log(`🗃️ Query Optimization using Set Theory`);
console.log(`Tables: ${tables.map(t => t.name).join(', ')}`);
console.log(`Conditions: ${JSON.stringify(conditions)}`);
// Simulate finding optimal join order using set theory
const tableSizes = new Map(tables.map(t => [t.name, t.size]));
console.log(`Table sizes: ${JSON.stringify(Object.fromEntries(tableSizes))}`);
// Use set intersection to estimate result sizes
let currentResultSize = Math.min(...Array.from(tableSizes.values()));
console.log(`Starting with smallest table size: ${currentResultSize}`);
for (const condition of conditions) {
// Simulate selectivity based on condition type
const selectivity = condition.includes('=') ? 0.1 : 0.5;
currentResultSize = Math.floor(currentResultSize * selectivity);
console.log(`After condition "${condition}": estimated ${currentResultSize} rows`);
}
console.log(`✅ Optimized query estimated result: ${currentResultSize} rows`);
return currentResultSize;
}
// Demonstrate set theory applications
demonstrateSetTheory() {
console.log('\n=== SET THEORY & BOOLEAN LOGIC ===\n');
console.log('1. SET OPERATIONS:');
const setA = new Set([1, 2, 3, 4, 5]);
const setB = new Set([4, 5, 6, 7, 8]);
const union = this.setUnion(setA, setB);
console.log('');
const intersection = this.setIntersection(setA, setB);
console.log('');
const difference = this.setDifference(setA, setB);
console.log('');
console.log('2. BOOLEAN LOGIC:');
const expression = 'A AND (B OR NOT C)';
const variables = { A: true, B: false, C: true };
const result = this.evaluateBooleanExpression(expression, variables);
console.log('');
console.log('3. TRUTH TABLE:');
const truthTable = this.generateTruthTable(['A', 'B'], 'A AND B');
console.log('');
console.log('4. PRACTICAL APPLICATION - Query Optimization:');
const tables = [
{ name: 'users', size: 1000000 },
{ name: 'orders', size: 5000000 },
{ name: 'products', size: 100000 }
];
const conditions = ['user_id = 12345', 'order_date > 2023-01-01'];
const optimizedSize = this.optimizeQuery(tables, conditions);
console.log('');
console.log('5. REAL-WORLD APPLICATIONS:');
console.log('- Database indexing and query optimization');
console.log('- Logic circuit design and verification');
console.log('- Data deduplication and merging');
console.log('- Access control and permission systems');
console.log('- Graph algorithms (vertex and edge sets)');
return {
setOperations: { union: union.size, intersection: intersection.size, difference: difference.size },
booleanLogic: result,
truthTable: truthTable.length,
queryOptimization: optimizedSize
};
}
}
// Test set theory algorithms
const setTheory = new SetTheoryAlgorithms();
setTheory.demonstrateSetTheory();
Concept: Mathematical structures representing relationships between objects.
// Graph Theory Foundations for Algorithms
class GraphTheoryFoundations {
constructor() {
this.createSampleGraph();
}
createSampleGraph() {
// Create a sample graph: Social network representation
this.graph = {
vertices: ['Alice', 'Bob', 'Charlie', 'Diana', 'Eve'],
edges: [
['Alice', 'Bob'],
['Alice', 'Charlie'],
['Bob', 'Diana'],
['Charlie', 'Diana'],
['Diana', 'Eve']
],
// Adjacency list representation
adjacencyList: {
'Alice': ['Bob', 'Charlie'],
'Bob': ['Alice', 'Diana'],
'Charlie': ['Alice', 'Diana'],
'Diana': ['Bob', 'Charlie', 'Eve'],
'Eve': ['Diana']
}
};
}
// Graph properties analysis
analyzeGraphProperties() {
console.log(`📊 Analyzing Graph Properties`);
console.log(`Vertices: [${this.graph.vertices.join(', ')}]`);
console.log(`Edges: ${this.graph.edges.map(e => `(${e[0]}, ${e[1]})`).join(', ')}`);
const numVertices = this.graph.vertices.length;
const numEdges = this.graph.edges.length;
console.log(`\n📈 Basic Properties:`);
console.log(`|V| = ${numVertices} vertices`);
console.log(`|E| = ${numEdges} edges`);
// Calculate degree of each vertex
const degrees = {};
for (const vertex of this.graph.vertices) {
degrees[vertex] = this.graph.adjacencyList[vertex].length;
console.log(`degree(${vertex}) = ${degrees[vertex]}`);
}
// Graph density
const maxPossibleEdges = (numVertices * (numVertices - 1)) / 2;
const density = numEdges / maxPossibleEdges;
console.log(`\n🔍 Graph Density: ${numEdges}/${maxPossibleEdges} = ${density.toFixed(3)}`);
console.log(`💡 Density close to 0 = sparse, close to 1 = dense`);
return { vertices: numVertices, edges: numEdges, density: density, degrees: degrees };
}
// Matrix representations
createAdjacencyMatrix() {
console.log(`\n🗃️ Creating Adjacency Matrix`);
const n = this.graph.vertices.length;
const matrix = Array(n).fill().map(() => Array(n).fill(0));
// Create vertex index mapping
const vertexIndex = {};
this.graph.vertices.forEach((vertex, index) => {
vertexIndex[vertex] = index;
});
console.log(`Vertex indices: ${JSON.stringify(vertexIndex)}`);
// Fill matrix based on edges
for (const [u, v] of this.graph.edges) {
const i = vertexIndex[u];
const j = vertexIndex[v];
matrix[i][j] = 1;
matrix[j][i] = 1; // Undirected graph
console.log(`Edge (${u}, ${v}): matrix[${i}][${j}] = matrix[${j}][${i}] = 1`);
}
console.log(`\n📋 Adjacency Matrix:`);
console.log(' ' + this.graph.vertices.join(' '));
for (let i = 0; i < n; i++) {
const row = this.graph.vertices[i].padEnd(4) + matrix[i].join(' ');
console.log(row);
}
return matrix;
}
// Path finding using graph theory
findAllPaths(start, end, currentPath = [], allPaths = [], depth = 0) {
const indent = ' '.repeat(depth);
console.log(`${indent}🔍 Finding paths from ${start} to ${end}`);
console.log(`${indent}Current path: [${currentPath.join(' → ')}]`);
// Add current vertex to path
currentPath.push(start);
// Base case: reached destination
if (start === end) {
console.log(`${indent}✅ Found complete path: [${currentPath.join(' → ')}]`);
allPaths.push([...currentPath]);
} else {
// Recursive case: explore neighbors
const neighbors = this.graph.adjacencyList[start] || [];
console.log(`${indent}Neighbors of ${start}: [${neighbors.join(', ')}]`);
for (const neighbor of neighbors) {
// Avoid cycles (don't revisit vertices in current path)
if (!currentPath.includes(neighbor)) {
console.log(`${indent}➡️ Exploring neighbor ${neighbor}`);
this.findAllPaths(neighbor, end, currentPath, allPaths, depth + 1);
} else {
console.log(`${indent}⚠️ Skipping ${neighbor} (already in path - would create cycle)`);
}
}
}
// Backtrack: remove current vertex from path
currentPath.pop();
console.log(`${indent}⬅️ Backtracking from ${start}`);
return allPaths;
}
// Graph connectivity analysis
analyzeConnectivity() {
console.log(`\n🔗 Analyzing Graph Connectivity`);
// Check if graph is connected using DFS
const visited = new Set();
const startVertex = this.graph.vertices[0];
console.log(`Starting DFS from ${startVertex}:`);
this.dfsConnectivity(startVertex, visited, 0);
const isConnected = visited.size === this.graph.vertices.length;
console.log(`\n📊 Connectivity Analysis:`);
console.log(`Visited ${visited.size} out of ${this.graph.vertices.length} vertices`);
console.log(`Graph is ${isConnected ? 'CONNECTED' : 'NOT CONNECTED'}`);
if (!isConnected) {
const unvisited = this.graph.vertices.filter(v => !visited.has(v));
console.log(`Unreachable vertices: [${unvisited.join(', ')}]`);
}
return { isConnected: isConnected, visitedCount: visited.size };
}
dfsConnectivity(vertex, visited, depth) {
const indent = ' '.repeat(depth);
console.log(`${indent}🔍 DFS visiting ${vertex}`);
visited.add(vertex);
const neighbors = this.graph.adjacencyList[vertex] || [];
for (const neighbor of neighbors) {
if (!visited.has(neighbor)) {
console.log(`${indent}➡️ Exploring unvisited neighbor ${neighbor}`);
this.dfsConnectivity(neighbor, visited, depth + 1);
} else {
console.log(`${indent}⚪ ${neighbor} already visited`);
}
}
}
// Demonstrate graph theory applications
demonstrateGraphTheory() {
console.log('\n=== GRAPH THEORY FOUNDATIONS ===\n');
console.log('SAMPLE GRAPH: Social Network');
console.log('Vertices = People, Edges = Friendships\n');
const properties = this.analyzeGraphProperties();
const matrix = this.createAdjacencyMatrix();
console.log('\n🛤️ PATH FINDING:');
console.log('Finding all paths from Alice to Eve:');
const paths = this.findAllPaths('Alice', 'Eve');
console.log(`\nAll paths found:`);
paths.forEach((path, index) => {
console.log(` Path ${index + 1}: ${path.join(' → ')}`);
});
const connectivity = this.analyzeConnectivity();
console.log('\n🌍 REAL-WORLD APPLICATIONS:');
console.log('- Social Networks: Friend recommendations, influence analysis');
console.log('- Transportation: Route planning, traffic optimization');
console.log('- Computer Networks: Data routing, network topology');
console.log('- Web Graphs: PageRank, link analysis');
console.log('- Dependency Graphs: Build systems, task scheduling');
console.log('- Biological Networks: Protein interactions, gene regulation');
return {
properties: properties,
paths: paths.length,
connectivity: connectivity.isConnected
};
}
}
// Test graph theory foundations
const graphTheory = new GraphTheoryFoundations();
graphTheory.demonstrateGraphTheory();
Mathematics provides the intellectual tools for systematic problem-solving. It transforms programming from trial-and-error experimentation into principled engineering based on provable foundations.
Key insight: The most elegant and efficient algorithms often have deep mathematical beauty—they reveal fundamental patterns in how information can be organized and processed.
Understanding these mathematical foundations enables you to:
Mathematics is the universal language of algorithms—master it, and you unlock the ability to solve problems that others can't even properly describe! 🚀✨
Module 1 Complete! 🎉 You now have the foundational knowledge needed for advanced algorithmic thinking. Next up: Module 2 - Basic Data Structures where we'll apply these mathematical principles to organize and manipulate data efficiently!
I'm Rahul, Sr. Software Engineer (SDE II) and passionate content creator. Sharing my expertise in software development to assist learners.
More about me